25 research outputs found

    Efficient Real-Time Architectures and FPGA Implementations of Histogram-Based Median Filters for High Definition Videos

    Get PDF
    Digital filtering plays an important role in many signal processing applications. Filtering is performed to recover the original signal from its corrupted version. Median filter is a non-linear digital filter that replaces a sample in a given window by the median value of the samples in the window. For images corrupted with impulse noise, median filter provides a very high quality of filtered images. Several modifications of median filters have been proposed and implemented to achieve high image quality compared to that provided by conventional median filters. When these filters are implemented on hardware platforms such as FPGAs, the performance parameters, namely, the area, power and operating frequency should be taken into consideration in addition to the quality of the filtered image. Therefore, efficient implementation of median filters on FPGAs for image and video processing algorithms has been a topic of much interest. The existing hardware-based median filters for high definition video formats do not always satisfy the real-time throughput requirements or are inefficient with respect to hardware performance parameters, such as the area and frequency. This is due to the fact that most of the existing techniques use sorting-based median calculation, which results in a low hardware performance. In this thesis, architectures that use histogram-based median computation, which is a non-sorting-based operation, are designed with a view of efficient hardware implementation. This is carried out in two parts. We design and implement efficient architectures that satisfy the real-time throughput requirements of full high definition (FHD) videos in the first part and that of ultra high definition (UHD) videos in the second part. In the first part, an efficient real-time histogram-based median filter that uses the concept of bit-plane-slicing and adaptive switching median filter (ASMF) is designed and implemented on FPGAs. We term this architecture as hybrid architecture for median filtering (HAMF). The proposed HAMF computes an approximate median, since it uses only the most significant B-bits of the pixel values for median calculation. As a result, the algorithmic level implementation of the proposed HAMF results in a slight degradation in the filtered image quality compared to that provided by ASMF. The proposed HAMF provides a significant improvement over ASMF in terms of the area and operating frequency, when implemented on different generation FPGAs. Analysis of the different parameters, such as the number of bit-planes used in the computation of the median and the number of pipelining stages, is carried out to study the trade-off between the quality of the filtered image and hardware performance. Although the FPGA implementation of the proposed HAMF provides a very high operating frequency, the quality of the images filtered by its algorithmic level implementation decreases with increasing window size and noise density. This filter may be suitable for applications that require FHD filtering with cost constraints, but not for applications where the output image quality is as important as the hardware performance. Hence, in the second part, we design an efficient and real-time architecture of the hierarchical histogram-based median filter (HHMF). The proposed architecture is designed using a full synchronous pipeline, a synchronous accumulate-and-compare unit, and is scalable. The FPGA implementation of the proposed architecture of HHMF can perform real-time filtering of 4K and 8K UHD videos. The quality of the image filtered by HHMF is not compromised as in the case of HAMF, since HHMF uses all the bit-planes and computes the actual median. Although the FPGA implementation of HHMF results in more area utilization, the proposed implementation is more economical than a GPU-based HHMF implementation and provides a better throughput

    Combustion synthesis of fullerenes and fullerenic nanostructures

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Chemical Engineering, 2002.Includes bibliographical references (leaves 123-132).Fullerenes are molecules comprised entirely of spÂČ-bonded carbon atoms arranged in pentagonal and hexagonal rings to form a hollow, closed-cage structure. Buckyballs, a subset which contains C₆₀ and C₇₀, are single-shell molecules while fullerenic nanostructures can contain many shells and over 300 carbon atoms. Both fullerenes and nanostructures have an array of applications in a wide variety of fields, including medical and consumer products. Fullerenes were discovered in 1985 and were first isolated from the products of a laminar low-pressure premixed benzene/oxygen/argon flame operating at fuel-rich conditions in 1991. Flame studies indicated that fullerene yields depend on operating parameters such as temperature, pressure, residence time, and equivalence ratio. High-resolution transmission electron microscopy (HRTEM) showed that the soot contains nanostructures, including onions and nanotubes. Although flame conditions for forming fullerenes have been identified, the process has not been optimized and many flame environments of potential interest are unstudied. Mechanistic characteristics of fullerene formation remain poorly understood and cost estimation of large-scale production has not been performed. Accordingly, this work focused on: 1) studying fullerene formation in diffusion and premixed flames under new conditions to identify optimal parameters; 2) investigating the reaction of fullerenes with soot; 3) positively identifying C₆₀ molecules in HRTEM by tethering them to carbon black; and 4) providing a cost estimation for industrial fullerenic soot production.(cont.) Samples of condensable material from laminar low-pressure benzene/argon/oxygen diffusion flames were collected and analyzed by high-performance liquid chroma- tography (HPLC) and HRTEM. The highest concentration of fullerenes in a flame was always detected just above the height where the fuel is consumed. The percentage of fullerenes in condensable material increases with decreasing pressure and the fullerene content of flames with similar cold gas velocities shows a strong dependence on length. A shorter flame, resulting from higher dilution or lower pressure, favors the formation of fullerenes rather than soot, exhibited by the lower amount of soot and precursors in such flames. This indicates a stronger correlation of fullerene consumption to soot levels than of fullerene formation to precursor concentration. The maximum flame temperature seems to be of minor importance in formation. The overall highest amount of fullerenes was found for a surprisingly high dilution of fuel with argon. The HRTEM analysis showed an increase of the curvature of the carbon layers, and hence increased fullerenic character, with increasing distance from the burner up to the point of maximum fullerene concentration, after which it decreases, consistent with the HPLC analysis. The soot shows highly ordered regions that appear to have been cells of fullerenic nanostructure formation. The samples also included fullerenic nanostructures such as tubes and spheroids including highly-ordered multilayered or onion-like structures. Studies of turbulent-like benzene/oxygen/argon diffusion flames showed that these flames produce fullerenes over a wider range of heights than laminar flames but with lower yields.(cont.) No discernible trend could be detected in the data and the fullerene results were not easily reproducible indicating that such flames are not suitable for fullerene formation. Soot samples were also collected from a well-characterized laminar premixed benzene/oxygen/argon flat flame under new conditions and analyzed by HPLC and HRTEM. Flame studies using secondary injections of benzene or acetylene show that two-stage flames are unsuitable for fullerene production. It seems that secondary fuel has an adverse effect on the formation of fullerenes and creates conditions that are similar to the early stages of a single-stage flame prior to soot formation. This means that fuel must go through the combustion process to form fullerenes and that they cannot be formed simply by organic pyrolysis. Additionally, fullerene data collected in this study show significantly higher yields than in a previous study and the absence of a concentration drop-off. The coexistence of fullerenes and soot does not support but also does not rule out that fullerenes are consumed by soot, as was suggested by diffusion flame data. Given the discrepancy in the data, fullerene consumption was studied in experiments involving pure fullerenes being sublimated into a passing argon gas stream. This gas stream then passed through a carbon black bed. As the fullerenes passed through the bed, a certain percentage reacted with the surface of the particles and the non-reacted material was collected downstream. Experiments at different temperatures indicate that fullerenes are indeed consumed by soot particles but that the consumption is quite slow.(cont.) The rate coefficient obtained resembles those seen for surface diffusion controlled reactions or for heterogeneous reactions. Extrapolation of the reaction coefficient to flame conditions would indicated that this type of fullerene consumption is not nearly enough to explain the consumption observed in fullerene-forming flames, meaning that fullerenes are consumed by other mechanisms. HRTEM analysis of carbon black with and without tethered fullerenes shows that fullerenes can in fact be observed in TEM micrographs. In this experiment, functionalized C₆₀ molecules were attached to the surface of carbon black particles with a chemical tether. The resulting compound was analyzed by HRTEM and compared with similar analysis of untreated carbon black. The post-treatment carbon black not only has an order of magnitude greater concentration of apparent fullerene structures but size distribution data shows a significant peak at the C₆₀ diameter for the treated sample whereas no peak is observed for the untreated sample. This indicates that the fullerenes have indeed been attached to the particle surface and that they can definitively be seen in images produced from HRTEM. Lastly, a model was built to estimate the cost of the large scale production of fullerenic soot. This model was based on current carbon black technology and takes into account operating parameters specific for fullerene production. Sensitivity analyses performed on the model indicate that soot yield and fuel price are the most important factors in determining production cost while electricity costs are minimally important.(cont.) It was seen that operating pressure and equipment lifetime are negligible in the final cost. Overall, combustion holds immense promise to be a much cheaper and more efficient alternative to the current method of commercial fullerene production.by Anish Goel.Ph.D

    Challenges and issues in continuum modelling of tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals

    Get PDF
    Contribution of finite element method (FEM) as a modelling and simulation technique to represent complex tribological processes has improved our understanding about various biomaterials. This paper presents a review of the advances in the domain of finite element (FE) modelling for simulating tribology, wear, cutting and other processes involving high-strain rate plastic deformation of metals used in bio tribology and machining. Although the study is largely focused on material removal cases in metals, the modelling strategies can be applied to a wide range of other materials. This study discusses the development of friction models, meshing and remeshing strategies, and constitutive material models. The mesh-based and meshless formulations employed for bio tribological simulations with their advantages and limitations are also discussed. The output solution variables including scratch forces, local temperature, residual stresses are analyzed as a function of input variables

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Comparison of electrochemical skin conductance and vibration perception threshold measurement in the detection of early diabetic neuropathy

    No full text
    <div><p>The early diagnosis of diabetic peripheral neuropathy (DPN) is challenging. Sudomotor dysfunction is one of the earliest detectable abnormalities in DPN. The present study aimed to determine the diagnostic performance of the electrochemical skin conductance (ESC) test in detecting early DPN, compared with the vibration perception threshold (VPT) test and diabetic neuropathy symptom (DNS) score, using the modified neuropathy disability score (NDS) as the reference standard. Five hundred and twenty-three patients with type 2 diabetes underwent an NDS-based clinical assessment for neuropathy. Participants were classified into the DPN and non-DPN groups based on the NDS (≄ 6). Both groups were evaluated further using the DNS, and VPT and ESC testing. A receiver-operator characteristic (ROC) curve analysis was performed to compare the efficacy of ESC measurements with those of DNS and VPT testing in detecting DPN. The DPN group (n = 110, 21%) had significantly higher HbA1c levels and longer diabetes durations compared with the non-DPN group (n = 413). The sensitivity of feet ESC < 60 ÎŒS, VPT testing, and DNS in detecting DPN were 85%, 72%, and 52%, respectively. The specificity of feet ESC, VPT, and DNS in detecting DPN were 85%, 90% and 60% respectively. The areas under the curves of the ROC plots for feet ESC, VPT testing, and DNS were 0.88, 0.84, and 0.6, respectively. A significant inverse linear relationship was noted between VPT and feet ESC (r = -0.45, p = <0.0001). The odds ratios for having DPN, based on the mean feet ESC testing < 60 ÎŒS, VPT testing > 15 V, and DNS ≄ 1, were 16.4, 10.9 and 1.8, respectively. ESC measurement is an objective and sensitive technique for the early detection of DPN. Feet ESC measurement was superior to VPT testing for identifying patients with early DPN.</p></div

    Percentages of abnormal DNS scores, and VPT or feet ESC measurements in patients with DPN, as defined by NDS ≄ 6 (n = 110).

    No full text
    <p>DNS—diabetic neuropathy symptom score, n = 59 (54%). VPT- vibration perception threshold, n = 79 (72%). Feet ESC- feet electrochemical skin conductance, n = 93 (84%).</p
    corecore